Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell Metab ; 35(2): 227-228, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2252967

ABSTRACT

There is increasing interest in GDF15 analogs as therapeutic agents for obesity. In this issue of Cell Metabolism, Benichou et al. report the first clinical trial of such a drug in obese humans.


Subject(s)
Growth Differentiation Factor 15 , Obesity , Humans , Obesity/drug therapy , Obesity/metabolism
2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2256618

ABSTRACT

Growth differentiation factor 15 (GDF-15) is a stress-induced transforming growth factor-ß superfamily cytokine with versatile functions in human health. Elevated GDF-15 blood levels associate with multiple pathological conditions, and are currently extensively explored for diagnosis, and as a means to monitor disease progression and evaluate therapeutic responses. This review analyzes GDF-15 in human conditions specifically focusing on its association with muscle manifestations of sarcopenia, mitochondrial myopathy, and autoimmune and viral myositis. The use of GDF-15 as a widely applicable health biomarker to monitor muscle disease is discussed, and its potential as a therapeutic target is explored.


Subject(s)
Growth Differentiation Factor 15 , Muscle, Skeletal , Humans , Biomarkers , Cytokines/metabolism , Growth Differentiation Factor 15/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Transforming Growth Factor beta
3.
Sci Rep ; 12(1): 15999, 2022 09 26.
Article in English | MEDLINE | ID: covidwho-2042335

ABSTRACT

Immunity with SARS-CoV-2 infection during the acute phase is not sufficiently well understood to differentiate mild from severe cases and identify prognostic markers. We evaluated the immune response profile using a total of 71 biomarkers in sera from patients with SARS-CoV-2 infection, confirmed by RT-PCR and controls. We correlated biological marker levels with negative control (C) asymptomatic (A), nonhospitalized (mild cases-M), and hospitalized (severe cases-S) groups. Among angiogenesis markers, we identified biomarkers that were more frequently elevated in severe cases when compared to the other groups (C, A, and M). Among cardiovascular diseases, there were biomarkers with differences between the groups, with D-dimer, GDF-15, and sICAM-1 higher in the S group. The levels of the biomarkers Myoglobin and P-Selectin were lower among patients in group M compared to those in groups S and A. Important differences in cytokines and chemokines according to the clinical course were identified. Severe cases presented altered levels when compared to group C. This study helps to characterize biological markers related to angiogenesis, growth factors, heart disease, and cytokine/chemokine production in individuals infected with SARS-CoV-2, offering prognostic signatures and a basis for understanding the biological factors in disease severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Chemokines , Cytokines , Growth Differentiation Factor 15 , Humans , Myoglobin , P-Selectin
4.
Front Cell Infect Microbiol ; 12: 942951, 2022.
Article in English | MEDLINE | ID: covidwho-1987476

ABSTRACT

Coronavirus disease 19 (COVID-19) is a persistent global pandemic with a very heterogeneous disease presentation ranging from a mild disease to dismal prognosis. Early detection of sensitivity and severity of COVID-19 is essential for the development of new treatments. In the present study, we measured the levels of circulating growth differentiation factor 15 (GDF15) and angiotensin-converting enzyme 2 (ACE2) in plasma of severity-stratified COVID-19 patients and uninfected control patients and characterized the in vitro effects and cohort frequency of ACE2 SNPs. Our results show that while circulating GDF15 and ACE2 stratify COVID-19 patients according to disease severity, ACE2 missense SNPs constitute a risk factor linked to infection susceptibility.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , Growth Differentiation Factor 15/genetics , Humans , Mutation , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics
5.
J Investig Med ; 70(4): 934-938, 2022 04.
Article in English | MEDLINE | ID: covidwho-1745675

ABSTRACT

Iron metabolism is tightly linked to infectious and inflammatory signals through hepcidin synthesis. To date, iron homeostasis during SARS-CoV-2 infection has not yet been described. The aim of this study is to characterize the hepcidin and erythroid regulators (growth differentiation factor 15 (GDF-15) and erythroferrone (ERFE)) by measuring concentrations in plasma in context of COVID-19 disease.We performed a single-center observational study of patients with COVID-19 to evaluate concentrations of main regulatory proteins involved in iron homeostasis, namely: hepcidin, ERFE and GDF-15. SARS-CoV-2 infection (COVID-19+) was defined by a positive RT-PCR. Sixteen patients with COVID-19+ were gender-matched and age-matched to 16 patients with a sepsis unrelated to SARS-CoV-2 (COVID-19-) and were compared with non-parametric statistic test.Clinical and hematological parameters, plasma iron, transferrin, transferrin saturation, ferritin, soluble transferrin receptor and C reactive protein were not statistically different between both groups. Median plasma hepcidin concentrations were higher in the COVID-19+ group (44.1 (IQR 16.55-70.48) vs 14.2 (IQR 5.95-18.98) nmol/L, p=0.003), while median ERFE and GDF-15 concentrations were lower in the COVID-19+ group (0.16 (IQR 0.01-0.73) vs 0.89 (IQR 0.19-3.82) ng/mL, p=0.035; 2003 (IQR 1355-2447) vs 4713 (IQR 2082-7774) pg/mL, p=0015), respectively) compared with the COVID-19- group.This is the first study reporting lower ERFE and GDF-15 median concentrations in patients with COVID-19+ compared with patients with COVID-19-, associated with an increased median concentration of hepcidin in the COVID-19+ group compared with COVID19- group.


Subject(s)
COVID-19 , Hepcidins , COVID-19/metabolism , Growth Differentiation Factor 15 , Hepcidins/metabolism , Humans , Iron/metabolism , SARS-CoV-2 , Transferrin/metabolism
6.
Front Immunol ; 13: 820350, 2022.
Article in English | MEDLINE | ID: covidwho-1731777

ABSTRACT

Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-ß superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.


Subject(s)
Adaptation, Psychological/physiology , Biomarkers/metabolism , COVID-19/metabolism , Growth Differentiation Factor 15/metabolism , Animals , COVID-19/virology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Cytokines/metabolism , Humans
8.
Trends Endocrinol Metab ; 32(11): 875-889, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401891

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of respiratory and cardiovascular diseases, known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes the structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). The receptor-binding domain on the surface subunit S1 is responsible for attachment of the virus to angiotensin (Ang)-converting enzyme 2 (ACE2), which is highly expressed in host cells. The cytokine storm observed in patients with COVID-19 contributes to the endothelial vascular dysfunction, which can lead to acute respiratory distress syndrome, multiorgan failure, alteration in iron homeostasis, and death. Growth and differentiation factor 15 (GDF15), which belongs to the transforming growth factor-ß (TGF-ß) superfamily of proteins, has a pivotal role in the development and progression of diseases because of its role as a metabolic regulator. In COVID-19, GDF15 activity increases in response to tissue damage. GDF15 appears to be a strong predictor of poor outcomes in patients critically ill with COVID-19 and acts as an 'inflammation-induced central mediator of tissue tolerance' via its metabolic properties. In this review, we examine the potential properties of GDF15 as an emerging modulator of immunity in COVID-19 in association with iron metabolism. The virus life cycle in host cell provides potential targets for drug therapy.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Endothelium, Vascular/immunology , Growth Differentiation Factor 15/immunology , Iron/metabolism , Apoptosis/immunology , COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Glial Cell Line-Derived Neurotrophic Factor Receptors/immunology , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/metabolism , Humans , Immunologic Factors/therapeutic use , Oxidative Stress/immunology , Prognosis , Pyroptosis/immunology , SARS-CoV-2 , COVID-19 Drug Treatment
9.
Front Immunol ; 12: 662465, 2021.
Article in English | MEDLINE | ID: covidwho-1337636

ABSTRACT

To systematically explore potential biomarkers which can predict disease severity in COVID-19 patients and prevent the occurrence or development of severe COVID-19, the levels of 440 factors were analyzed in patients categorized according to COVID-19 disease severity; including asymptomatic, mild, moderate, severe, convalescent and healthy control groups. Factor candidates were validated by ELISA and functional relevance was uncovered by bioinformatics analysis. To identify potential biomarkers of occurrence or development of COVID-19, patient sera from three different severity groups (moderate, severe, and critical) at three time points (admission, remission, and discharge) and the expression levels of candidate biomarkers were measured. Eleven differential factors associated with disease severity were pinpointed from 440 factors across 111 patients of differing disease severity. The dynamic changes of GDF15 reflect the progression of the disease, while the other differential factors include TRAIL R1, IGFBP-1, IGFBP-4, VCAM-1, sFRP-3, FABP2, Transferrin, GDF15, IL-1F7, IL-5Rα, and CD200. Elevation of white blood cell count, neutrophil count, neutrophil-lymphocyte ratio (NLR), Alanine aminotransferase and Aspartate aminotransferase, low lymphocyte and eosinophil counts in the severe group were associated with the severity of COVID-19. GDF15 levels were observed to be associated with the severity of COVID-19 and the dynamic change of GDF15 levels was closely associated with the COVID-19 disease progression. Therefore, GDF15 might serve as an indicator of disease severity in COVID-19 patients.


Subject(s)
Biomarkers/metabolism , COVID-19/immunology , Growth Differentiation Factor 15/metabolism , Inflammation Mediators/metabolism , SARS-CoV-2/physiology , Adult , Aged , Computational Biology , Female , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Young Adult
10.
Circulation ; 142(22): 2128-2137, 2020 12.
Article in English | MEDLINE | ID: covidwho-1021175

ABSTRACT

BACKGROUND: Growth differentiation factor 15 (GDF-15) is a strong prognostic marker in sepsis and cardiovascular disease (CVD). The prognostic value of GDF-15 in coronavirus disease 2019 (COVID-19) is unknown. METHODS: Consecutive, hospitalized patients with laboratory-confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and symptoms of COVID-19 were enrolled in the prospective, observational COVID Mechanisms Study. Biobank samples were collected at baseline, day 3 and day 9. The primary end point was admission to the intensive care unit or death during hospitalization, and the prognostic performance of baseline and serial GDF-15 concentrations were compared with that of established infectious disease and cardiovascular biomarkers. RESULTS: Of the 123 patients enrolled, 35 (28%) reached the primary end point; these patients were older, more often had diabetes, and had lower oxygen saturations and higher National Early Warning Scores on baseline. Baseline GDF-15 concentrations were elevated (>95th percentile in age-stratified healthy individuals) in 97 (79%), and higher concentrations were associated with detectable SARS-CoV-2 viremia and hypoxemia (both P<0.001). Patients reaching the primary end point had higher concentrations of GDF-15 (median, 4225 [IQR, 3197-5972] pg/mL versus median, 2187 [IQR, 1344-3620] pg/mL, P<0.001). The area under the receiver operating curve was 0.78 (95% CI, 0.70-0.86). The association between GDF-15 and the primary end point persisted after adjusting for age, sex, race, body mass index, estimated glomerular filtration rate, previous myocardial infarction, heart failure, and atrial fibrillation (P<0.001) and was superior and incremental to interleukin-6, C-reactive protein, procalcitonin, ferritin, D-dimer, cardiac troponin T, and N-terminal pro-B-type natriuretic peptide. Increase in GDF-15 from baseline to day 3 was also greater in patients reaching the primary end point (median, 1208 [IQR, 0-4305] pg/mL versus median, -86 [IQR, -322 to 491] pg/mL, P<0.001). CONCLUSIONS: GDF-15 is elevated in the majority of patients hospitalized with COVID-19, and higher concentrations are associated with SARS-CoV-2 viremia, hypoxemia, and worse outcome. The prognostic value of GDF-15 was additional and superior to established cardiovascular and inflammatory biomarkers. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04314232.


Subject(s)
Biomarkers/blood , COVID-19/diagnosis , Growth Differentiation Factor 15/analysis , Adult , Aged , Area Under Curve , C-Reactive Protein/analysis , COVID-19/virology , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prognosis , Prospective Studies , ROC Curve , SARS-CoV-2/isolation & purification , Treatment Outcome , Troponin T/blood
11.
Front Immunol ; 11: 581338, 2020.
Article in English | MEDLINE | ID: covidwho-890336

ABSTRACT

Objectives: The severity of Coronavirus Disease 2019 (COVID-19) is largely determined by the immune response. First studies indicate altered lymphocyte counts and function. However, interactions of pro- and anti-inflammatory mechanisms remain elusive. In the current study we characterized the immune responses in patients suffering from severe COVID-19-induced acute respiratory distress syndrome (ARDS). Methods: This was a single-center retrospective study in patients admitted to the intensive care unit (ICU) with confirmed COVID-19 between March 14th and May 28th 2020 (n = 39). Longitudinal data were collected within routine clinical care, including flow-cytometry of lymphocyte subsets, cytokine analysis and growth differentiation factor 15 (GDF-15). Antibody responses against the receptor binding domain (RBD) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein were analyzed. Results: All patients suffered from severe ARDS, 30.8% died. Interleukin (IL)-6 was massively elevated at every time-point. The anti-inflammatory cytokine IL-10 was concomitantly upregulated with IL-6. The cellular response was characterized by lymphocytopenia with low counts of CD8+ T cells, natural killer (NK) and naïve T helper cells. CD8+ T and NK cells recovered after 8 to 14 days. The B cell system was largely unimpeded. This coincided with a slight increase in anti-SARS-CoV-2-Spike-RBD immunoglobulin (Ig) G and a decrease in anti-SARS-CoV-2-Spike-RBD IgM. GDF-15 levels were elevated throughout ICU treatment. Conclusions: Massively elevated levels of IL-6 and a delayed cytotoxic immune defense characterized severe COVID-19-induced ARDS. The B cell response and antibody production were largely unimpeded. No obvious imbalance of pro- and anti-inflammatory mechanisms was observed, with elevated GDF-15 levels suggesting increased tissue resilience.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Cytokine Release Syndrome/pathology , Pneumonia, Viral/pathology , Severe Acute Respiratory Syndrome/pathology , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Female , Growth Differentiation Factor 15/blood , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Intensive Care Units , Interleukin-10/blood , Interleukin-6/blood , Longitudinal Studies , Lymphopenia , Male , Middle Aged , Pandemics , Pilot Projects , Pneumonia, Viral/immunology , Retrospective Studies , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL